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ABSTRACT

Motivated by the success of ensemble forecasting at the medium range, the performance of a prototype short-
range ensemble forecast system is examined. The ensemble dataset consists of 15 case days from September
1995 through January 1996. There are 15 members of the ensemble, 10 from an 80-km version of the eta model
and five from the regional spectral model. Initial conditions include various in-house analyses available at the
National Centers for Environmental Prediction as well as bred initial conditions interpolated from the medium-
range forecast ensemble. Forecasts from the 29-km mesoeta model were archived as well for comparison.

The performance of the ensemble is first evaluated by the criterion of ‘‘uniformity of verification rank.’’
Assuming a perfect forecast model, equally plausible initial conditions, and the verification is a plausible member
of the ensemble, these imply the verification when pooled with the 15 ensemble forecasts and sorted is equally
likely to occur in each of the 16 ranks. Hence, over many independent samples, a histogram of the rank distribution
should be nearly uniform. Using data from the ensemble forecasts, rank distributions were populated and found
to be nonuniform. This was determined to be largely a result of model and initial condition deficiencies and
not problems with the verification data. The uniformity of rank distributions varied with atmospheric baroclinicity
for midtropospheric forecast variables but not for precipitation forecasts.

Examination of the error characteristics of individual ensemble members showed that the assumption of
identical errors for each member is not met with this particular ensemble configuration, primarily because of
the use of both bred and nonbred initial conditions in this test. Further, there were both differences in the accuracy
of eta and regional spectral model bred member forecasts.

The performance of various summary forecasts from the ensemble such as its mean showed that the ensemble
can generate forecasts that have similar or lower error than forecasts from the 29-km mesoeta, which was
approximately equivalent in computational expense. Also, by combining the ensemble forecasts with rank in-
formation from other cases, reliable ensemble precipitation forecasts could be created, indicating the potential
for useful probabilistic forecasts of quantitative precipitation from the ensemble.

1. Introduction

The use of ensemble methodologies has resulted in
dramatic improvements in the skill of medium-range
weather forecasts (Tracton and Kalnay 1993; Toth and
Kalnay 1993; Molteni et al. 1996). Motivated by this
success, research has begun in the application of en-
semble methodologies to short-range forecasts (0–48 h).

Ensemble techniques have been adopted as a practical
method for numerical weather prediction given the at-
mosphere’s sensitive dependence on the initial condition
(Lorenz 1963). Small errors in the initial condition (IC)
grow exponentially during the forecast integration, so
a single deterministic forecast will eventually be useless
as guidance. Ensemble forecasting (Epstein 1969; Leith
1974) adopts the alternative goal of predicting the prob-
ability of future weather conditions. Here, a varied set
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of ICs are generated that are all consistent with the
observations and their errors. Separate deterministic
forecasts are integrated from each IC, and the relative
frequency of weather outcomes are used to estimate a
forecast probability distribution.

At 1–2 weeks lead time, even the planetary-scale flow
shows the effects of sensitive dependence on the IC,
and hence ensemble methodologies have proved bene-
ficial for medium-range forecasting of planetary wave
patterns. For short-range forecasts, the focus is on im-
proving the predictions of specific weather elements,
such as cloud cover, precipitation amount, and temper-
ature. Through 48 h, the planetary scale is relatively
predictable; however, synoptic and subsynoptic features
are less predictable (Lorenz 1969; Livingston and Shae-
fer 1990). If the weather elements of interest are affected
by these smaller-scale, more chaotic features, as seems
plausible, ensemble methodologies may prove similarly
beneficial for the short range.

The optimal use of available computer power is a
contentious issue. Until only the last few years, it has
been assumed in short-range weather prediction that the
most beneficial use of newly available computer re-
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sources is for the execution of weather forecast models
on finer grid meshes and using more complex model
physics (Brooks et al. 1992; Brooks and Doswell 1993;
Harrison 1994). Running a deterministic forecast at
higher resolution allows more scale interaction, reduces
the errors due to finite-difference approximations, per-
mits more realistic treatment of cloud-scale processes,
and improves the forecasts of blocks (Tracton 1990).
There is a vast literature of the improvements achieved
with higher resolution models. However, past improve-
ments from finer resolution do not guarantee continu-
ation of the trend. In the United States, between 1981
and 1996, the state-of-the art forecast model has in-
creased in resolution from approximately 190 km (New-
ell and Deaven 1981) to 29 km (Black 1994; Rogers et
al. 1996), a resolution increase of 6.5 times. McPherson
(1991) suggests computational power will be available
early in the next century to run limited-area forecast
models at 5-km resolution. While there will undoubtedly
be improvements to the forecast from increased reso-
lution, the main desire is the ability to accurately fore-
cast mesoscale detail from such high-resolution models.
The evidence for this is more mixed. For example,
Reynolds et al. (1994) found that most forecast errors
in the midlatitudes are now attributable to predictability
error growth rather than model deficiencies; that is,
problems with the IC. Similarly, experiments at the Eu-
ropean Centre for Medium-Range Weather Forecasts
(ECMWF) (Simmons et al. 1995) have shown that fore-
casts at T213 resolution amplify initial errors more
quickly than previous, lower-resolution versions of the
model, and Kuo and Reed (1988) did not find significant
improvement of explosive cyclogenesis from increased
resolution. Without consistent and reliable mesoscale
information in the IC, the predictability of mesoscale
features in the forecast is suspect unless the feature
evolved due to terrain or large-scale forcing. While these
no doubt frequently happen, there are many forecast
situations where mesoscale features are organized by
mesoscale detail not captured by current observing sys-
tems, and hence the forecast mesoscale generated will
not be trustworthy. The ensemble approach to fore-
casting provides a way of addressing the uncertainty in
the IC. Assuming a halving of model resolution de-
creases CPU usage sixteenfold, for the same compu-
tational time as a 5-km, single-integration forecast, an
8-member ensemble forecast could be run at 8.4 km, a
16-member ensemble 10-km resolution, or a 256-mem-
ber at 20 km. Similarly, further into the future, the
choice may be between 0.5-km single integrations or
1-km ensembles. Hence, even if short-range ensemble
forecasting proves not to be beneficial given today’s
coarser grid structure, the exponential increase in com-
puter power indicates its eventual relevance.

Because of the potential relevance now and its future
relevance, ensemble methodologies applied to the short
range are being actively explored (Mullen and Baum-
hefner 1994; Manikin 1995; Brooks et al. 1995; Brooks

et al. 1996; Hamill and Colucci 1996). Since the ex-
perience with ensemble forecasts specifically for the
short range is scant, questions are currently more nu-
merous than answers. What is the best method for gen-
erating ICs? Should an ensemble consist only of per-
turbations to the ICs, or include ‘‘perturbations’’ to mod-
el physics such as different convective trigger functions
(Stensrud and Fritsch 1994) and convective parameter-
izations? What is the optimal tradeoff between the num-
ber of members and the resolution? How do we syn-
thesize ensemble forecast data so that the operational
forecaster need not examine every model solution?
These questions and the relevant literature to date are
examined in more depth in a workshop summary by
Brooks et al. (1995).

A major result of this workshop was the commitment
of the National Centers for Environmental Prediction
(NCEP) to produce a test set of ensemble for prelimi-
nary exploration of the concept of operational short-
range ensemble forecasting. A set of 15 ensemble fore-
casts were produced in each test case, and observations
and high-resolution forecasts were also archived. This
paper statistically evaluates this set of ensemble fore-
casts. Three questions are to be answered by this re-
search. First, is the unmodified ensemble useful for eval-
uating the actual probability of various forecast events,
and if not, can this ensemble be postprocessed to gen-
erate calibrated probabilistic forecasts? Second, are the
assumptions underlying ensemble forecasting met by
this ensemble configuration? And third, how do ensem-
ble mean and median forecasts compare to control fore-
casts from a single, high-resolution model integration?

Section 2 of this paper will review the configuration
of the ensemble dataset used in this research. Section 3
evaluates the quality of the ensemble forecasts by an
examination of the rank of the verification in compar-
ison to the ensemble, as well as how calibrated prob-
abilistic forecasts can be generated from an imperfect
ensemble. Comparisons of ensemble summary statistics
to the mesoeta forecasts are provided in section 4. Fi-
nally, conclusions and recommendations for future re-
search are provided in section 5.

2. Description of the ensemble and verification
data

The test ensemble configuration consisted of
15-member forecasts, 10 of which are integrations of
the eta model (Black 1994; Rogers et al. 1995) and 5
from the regional spectral model (RSM) (Juang and
Kanamitsu 1994). The eta model ensemble forecasts
were run at 80-km resolution with 38 vertical levels out
to 48-h lead time. The RSM runs were also run to
48 h at 80-km resolution with 28 sigma levels, the same
vertical resolution as the aviation (AVN) run of the Me-
dium-Range Weather Forecast (MRF) Model (Kanam-
itsu et al. 1991). For comparison, mesoeta forecasts to
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FIG. 1. Map of the location of precipitation observations in the River Forecast Center database.
Area of the box is proportional to the number of raw observations assigned to the grid box.

36 h at 29 km and with 50 vertical levels were also
archived.

ICs were generated from data already available at
NCEP. These included ICs from many of the various
in-house analyses and the ICs interpolated from the me-
dium-range breeding forecasts (Toth and Kalnay 1993).
For the eta ensemble, ICs were generated from the op-
erational eta IC (Rogers et al. 1996); the eta experi-
mental data assimilation system, or ‘‘EDAS’’ (Rogers
et al. 1995); the interpolated 3D-variational analysis
(Parrish et al. 1996); the Nested Grid Model regional
analysis (DiMego et al. 1992); the AVN IC (Parrish and
Derber 1992); the MRF model control forecast (Derber
et al. 1991; Parrish and Derber 1992); and two positive
and two negative bred perturbations (Toth and Kalnay
1993). For the RSM, again the MRF model controls
forecast and two positive and two negative bred per-
turbations were used as ICs.

Boundary conditions for all bred forecasts came di-
rectly from the respective bred MRF model forecast.
For the EDAS, the previous 12-h AVN forecast bound-
ary conditions were used. For all other forecasts, the
on-time AVN boundary conditions are used.

The forecasts were run from 1200 UTC data with the
following dates: 5 September, 9 September, 18 Septem-
ber, 25 September, 2 October, 23 October, 8 November,
13 November, 20 November, 27 November, 11 Decem-
ber, 18 December, 26 December 1995; and 23 January
and 31 January 1996.

Rawinsonde data within the conterminous United
States were used for forecast verification, except for
precipitation. For precipitation, 24-h rainfall totals were
obtained from the River Forecast Center database. Grid-
ded verification analyses were obtained from the ob-
servations by assigning each rainfall observation to its

nearest 80-km grid box and then averaging all the ob-
servations in each box. The density of observations var-
ies considerably; there are many grid boxes in the in-
termountain west without any observations; east of the
Mississippi, there are usually five or more observations.
Figure 1 plots the grid boxes with available observa-
tions.

3. Use of the ensemble for generating calibrated
probability forecasts

a. Uniformity of verification rank

A number of assumptions are commonly made in en-
semble forecasting. First, when one examines an en-
semble member’s forecast at a given location, the fore-
cast value is assumed to represent an independent sam-
ple from the underlying true forecast probability density
function (pdf) at that location. Hence, with an infinite
set of ensemble forecasts, the relative frequency would
converge to the pdf. Also, a perfect forecast model is
assumed, and the unknown, true evolution of the at-
mospheric state is considered a plausible member of the
ensemble. Under these assumptions, each forecast
should have independent and identically distributed (iid)
errors.

These are unrealistically ideal assumptions; any sys-
tematic error in the forecast model can result in forecasts
with non-iid errors. Similarly, if the ICs are not equally
plausible, but some are less likely than others, then the
subsequent forecasts cannot be expected to exhibit equal
accuracy. Nonetheless, these assumptions permit a way
of assessing the quality of the ensemble. Assuming the
verification and each forecast are each equally plausible,
then the rank of the verification when pooled with N
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FIG. 2. Observation count at locations for sampling of ensembles
for purposes of building rank precipitation rank distributions.

ensemble forecasts and sorted from lowest to highest
value is equally likely to occur in each of the N 1 1
ranks. Over many independent samples, a distribution
of the verification ranks should approximate a discrete
uniform distribution with N 1 1 categories. The hy-
pothesis of uniformity of verification rank can be tested
with a chi-square (x2) goodness-of-fit test. If the rank
distribution is consistently uniform, the ensemble mem-
ber values may be used to develop calibrated forecast
probability distributions of weather events, a major goal
of ensemble forecasting.

Rules must be specified for assigning the rank. Mat-
ters are simple when the verification is different from
all ensemble members. For example, a verification tem-
perature of 238C when pooled with 10 ensemble fore-
casts of 258, 258, 248, 218, 08, 08, 18, 18, 28, and 38C
will be assigned rank 4 of 11. For situations where the
verification exactly equals some of the forecast mem-
bers, such as precipitation forecasts of zero and a ver-
ification of zero, a new rule for rank assignment was
needed. For these cases, the number (M) of members
tied with the verification was counted. M 1 1 uniform
random deviates (Press et al. 1992) are generated for
the M members and one verification, and the rank of
the verification’s deviate in the pool of M 11 deviates
was determined. All ensemble members with a lower
rank had an insignificantly small number (0.0001 in.)
subtracted from their values; similarly, all ensemble
members with higher rank had the tiny number added.
This randomly assigned the rank among the ties without
substantially affecting later calculations.

The requirement for independence of the errors at
sample points used to populate the rank distribution
conflicted with the need for larger sample size. Since
the test dataset consisted of ensemble forecasts run
roughly once weekly, a sampling of the verification rank
at a given location can reasonably be expected to not
exhibit significant temporal correlation. Thus, there
should be no problem sampling the same locations in
each test case. But within one test case domain, how
far apart should sample points be in order to be con-
sidered independent? Our own examination of the spa-
tial correlation of errors for this dataset (not shown) as
well as the results from many other short-range forecast
models (e.g., Hollingsworth and Lonnberg 1986; Mitch-
ell et al. 1990; Theibaux et al. 1990; Bartello and Mitch-
ell 1992) suggests a correlation length scale on the order
of several hundred kilometers. To boost the sample size,
the full rawinsonde data within the conterminous United
States was used to populate rank distributions, even
though adjacent rawinsonde locations can expect to have
error correlations of around 0.4. Similarly, for precip-
itation, sample points were selected that were 400 km
apart from each other, on average. Again, this distance
reflects a compromise between some moderate corre-
lation of forecast error between adjacent sample loca-
tions and adequate sample size. Specific grid locations
to sample were chosen to have at least five precipitation

observations assigned to the particular grid box to en-
sure representativeness of the observation. A map of the
sample locations for precipitation and their observation
count is shown in Fig. 2.

Sampling at these specified locations, distributions of
verification ranks were generated. Some representative
rank histograms are shown in Fig. 3, here, for 24-h
forecasts. The shape of the distributions did not change
markedly at other forecast projections (12, 36, and 48
h) or for other fields. Notice the distributions are highly
nonuniform; there is a marked tendency for the distri-
butions to be most populated at the extreme ranks. This
may indicate systematic errors in the forecast, insuffi-
cient variability among ensemble members, incorrect
observations, or some combination. If the rank distri-
bution is also skewed, as it is for 500-mb heights in Fig.
3b, this may indicate the systematic bias is large.

The rank distribution is not markedly different in
shape when considering subsets of the ensemble mem-
bers. Figures 4a–c show the rank distributions for the
same fields, but here the verification is pooled only with
the eta ensemble members initialized from the MRF
control and the bred forecasts. Figures 4d–f show rank
distributions calculated from the remaining five eta en-
semble members. As shown, there is little difference
between the bred and nonbred distributions.

Some of the rank distributions, most notably that for
the geopotential in Fig. 3b, were highly skewed. To the
extent that there are consistent systematic errors (biases)
affecting these fields, the ensemble may potentially be
adjusted. Ideally, it is preferable to archive model fore-
casts over many seasons and correct for systematic error
by location, as are done with Model Output Statistics
(MOS; Dallavalle et al. 1992). With the limited set of
15 case days, this is not possible. However, a dataset
of this size may be large enough to determine effective,
domain-averaged corrections for systematic error,
where the same corrective adjustment is applied to every
member at each sample point. This was attempted here
through a cross-validation technique (Wilks 1995),
whereby a separate bias correction was determined for
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FIG. 3. Rank distributions for 24-h forecasts from the ensemble:
(a) 850-mb temperature, (b) 500-mb geopotential height, and (c) 24-h
total precipitation amount.

each case day and ensemble member. Each of the other
14 available cases was used to generate the bias cor-
rection, and this was applied to forecasts on the re-
maining day. If the selected bias correction resulted in

subzero precipitation forecasts, these were reset to zero
temporarily, and then the same correction (0.0001 in.)
and methodology explained earlier was either added or
subtracted from these member forecasts to set ranks in
the case of ties. Rank distributions were then recalcu-
lated. The resulting adjusted rank histograms are shown
in Figs. 5a–c. Comparing with the unmodified histo-
grams in Fig. 3, the beneficial effect of the bias cor-
rection can be most clearly observed with the rank dis-
tribution for 500-mb heights (Figs. 3b and 5b), for which
the skewness of the distribution is nearly eliminated.

However, after bias corrections, the distributions are
each still concave and fail goodness-of-fit tests (p K
0.01), indicating the hypothesis of uniformity of rank
may be rejected. There are potentially many causes; the
bias corrections may need to be more sophisticated as
with MOS, or the ensemble may truly be insufficiently
variable, due to either less than optimal choices for ICs,
or model errors. A third possibility is that the obser-
vations are not representative of the grid box average
and tends to result in extreme rank assignment. For
example, with precipitation, the verification is simply
the average of all observations within the grid box.
There may be situations where a sparse sample of these
precipitation observations can result in an estimated grid
box average that is not truly representative of the actual
average. This is likely to be the case if the precipitation
varies substantially within the grid box, and the obser-
vation(s) samples its extremes.

To enable us to examine whether observational non-
representativeness was a major contributor to the ob-
served nonuniformity, rank distributions for paired sets
of ‘‘adequately’’ and ‘‘inadequately’’ sampled precipi-
tation forecast points were generated and compared. To
generate an inadequately sampled precipitation analysis,
at each sample point, one observation was selected and
used for the verification rather than the average of all
observations within the box (which comprised the ad-
equately sampled analysis). The numbers of observa-
tions for the adequately sampled analysis are shown in
Fig. 2. The distribution of ranks for the adequately sam-
pled set was previously shown in Fig. 3c. The rank
distribution for the ‘‘inadequately’’ sampled set is
shown in Fig. 6. As shown, the rank distributions are
quite similar; there are a small number of points that
have moved from the extreme rank to the middle, but
the distribution is still so highly nonuniform that we
conclude the effect of nonrepresentativeness of the ob-
servations was typically not a major cause of rank non-
uniformity. Thus, the primary cause is assumed to be
deficiencies of the model or suboptimal selection of ICs.

b. Uniformity as a function of baroclinic instability

The breeding method used to generate ICs is expected
to produce dispersive forecasts in conditions of baro-
clinic instability (Toth and Kalnay 1993). Of course, the
atmosphere is not always baroclinically unstable, so it
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FIG. 4. Rank distributions as in Fig. 3 but now from subsets of eta forecasts from the bred forecast and nonbred forecast initial
conditions: (a) 850 temperature from bred, (b) 500-mb geopotential height from bred, (c) 24-h total precipitation from bred, (d)
850 temperature from nonbred, (e) 500-mb geopotential height from nonbred, and (f) 24-h total precipitation from nonbred.
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FIG. 5. Same as Fig. 3 but after bias correction: (a) 850-mb tem-
perature, (b) 500-mb geopotential height, and (c) 24-h total precip-
itation amount.

FIG. 6. Rank distribution for 24-h precipitation forecasts with ‘‘in-
adequate’’ observational sample counts. Compare to Fig. 3c.

is reasonable to hypothesize that the dispersion within
the ensemble may vary with the weather condition. If
so, then the ensemble may be more useful in active
weather situations rather than quiescent ones.

To examine this hypothesis, baroclinic instability was
measured using 850–700-mb data and the formalism of
Lindzen and Farrell (1980):

f ]V
B 5 0.3125 . (1)( (N ]z

Here, f is the Coriolis parameter, N is the Brunt–Väisälä
frequency, and V is the horizontal wind vector. The
parameter is larger the more baroclinically unstable the
atmosphere. For each sample point where ensemble data
were gathered, the value of B at that the forecast time
was calculated from the ensemble mean fields. Next,
the samples points were sorted into three subsets: the
sixth with the lowest values of B, the middle two-thirds,
and the upper sixth. The ensemble was corrected for
domain-average bias as explained earlier, and rank dis-
tributions were then generated for the lowest sixth sub-
set and the highest sixth and compared. For 24-h 850-mb
temperatures and 500-mb height forecasts, the plots
showed that there was more uniformity of rank for the
more baroclinic subset, but not for the precipitation fore-
casts (Figs. 7a–c). The shape was similar for member
forecasts from bred ICs (not shown). Overall, these re-
sults suggest that the ensemble may do a better job at
predicting the midtropospheric uncertainty under highly
baroclinic conditions, but that this does not necessarily
translate into improved predictions in the uncertainty of
forecasts of surface parameters such as precipitation.

c. Post-hoc corrections to achieve calibration of
probabilistic forecasts

Given a nonuniform rank distribution, it is inappro-
priate to use the ensemble data relative frequencies alone
to build probabilistic forecasts. For example, if one-
fourth of the ensemble members are above a precipi-
tation threshold, the probability of the event being above
the threshold is not necessarily one-fourth, as indicated
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by the sum of the highest one-fourth of the ranks. How-
ever, there still is useful information in a nonuniform
rank distribution; if the shape of the rank distribution
remains the same no matter what samples are used to
populate it, then it can be used in conjunction with new
ensemble data to assess probabilities. For example, con-
sider Fig. 5c, showing a typical rank distribution for
bias-corrected 24-h precipitation forecasts. Here the
rank distribution indicates that the verification is higher
than the highest ensemble forecast on average 14% of
the time. Hence, subsequent ensemble forecasts can be
sorted, and the highest ensemble member can be used
to define the event threshold at which the verification
is expected to be greater 14% of the time. Unfortunately,
in such a case there is no direct evidence on the distri-
bution of probabilities above the 86th percentile, and
the probability of extreme events such as heavy rainfall
are of great interest. Hence, an alternative method is
necessary to assign probabilities in the tails. With a
uniform rank distribution, there is much less probability
in the tails, and hence the form of the distribution above
the highest ensemble member is of much less concern,
especially if there are many ensemble members and
hence little probability at the extreme ranks. Hence,
though postprocessing in this manner can improve the
ensemble post-hoc, it is preferable to correct the model
deficiencies that result in the nonuniformity of rank.

We now explore the potential of using rank distri-
butions in conjunction with the ensemble to achieve
greater reliability in precipitation forecasts. Suppose
there is a sorted ensemble precipitation forecast X for
a given time and location with N members, a verification
observation V, and a corresponding verification rank
distribution R with N 1 1 ranks representing the cli-
matological behavior of the verification compared to the
ensemble. Then probabilities of forecast events can be
assigned using (2):

i

p(V , X ) 5 R . (2)Oi j
j51

The following additional assumptions were also made.
First, the rank histogram probability is uniformly dis-
tributed below the lowest ensemble member and zero.
For a threshold T less than the lowest ensemble forecast
X1,

T
p(0 , V , T) 5 R , 0 , T , X . (3)1 11 2X1

For example, if the lowest ensemble member forecast
were 0.03 in., the threshold 0.01 in., and the probability
of the verification occurring below the lowest ensemble
member 15%, the assigned probability of 0.0–0.01 in.
is 5%. Similarly, it is assumed that a given rank’s prob-
ability is equally distributed between ensemble mem-
bers:

T 2 Xip(X , V , T) 5 R , X , T , X . (4)i i11 i i111 2X 2 Xi11 i

However, assumption of uniformity of probability be-
yond the highest ensemble forecast XN is certainly in-
appropriate. For example, given the highest ensemble
forecast is 0.75 in., the probability of 1–2-in. precipi-
tation should be greater than the probability of 2 to 3
in. Hence, it is assumed here that the probability beyond
the highest ensemble member has the shape of a Gumbel
distribution (Wilks 1995) fit to the ensemble data; the
Gumbel distribution was chosen for its ability to define
rare events in the tails and because of problems defining
Gamma distribution parameters over the range of pos-
sible precipitation events, especially dry events (Wilks
1990). Given the cumulative distribution function F of
the fitted Gumbel distribution, the forecast probability
that the verification will occur between any two thresh-
olds T2 . T1 $ XN is defined as

F(T ) 2 F(T )2 1P(T , V , T ) 5 . (5)1 2 1.0 2 F(X )N

Probabilistic forecasts of precipitation were generated
using this methodology on each of the 15 case days
using cross-validation, whereby rank histograms were
created from each of the other 14 case days. Because
the rank distributions differed in shape with ensemble
variability, rather than using one rank distribution to
establish probabilities, three separate distributions were
used depending on the point’s ensemble variability (de-
fined as the standard deviation of the ensemble members
about the ensemble mean). The three distributions were
for points with ensemble variability below 0.03 in., a
second for points between 0.03 and 0.12 in., and another
for points with ensemble variability above 0.12 in. Also,
because small sample size resulted in some unevenness
in the rank histogram, interior ranks were smoothed with
a running line smoother (Hastie and Tibshirani 1990)
using a neighborhood of 3.0 and a Gaussian kernel with
standard deviation of 1.0. The original and resulting
smoothed rank histograms used are shown in Figs. 8a–
f, here for defining the probabilities for 24-h forecasts
from the 5 September 1995 case.

Reliability diagrams (Wilks 1995) were created for
the uncorrected and corrected ensemble forecasts [Eqs.
(2)–(5) were used to establish probabilities for the un-
corrected forecasts, but the rank distribution was as-
sumed uniform]. Figures 9a–c show reliability diagrams
for the thresholds 0.01, 0.10, and 0.25 in. (higher thresh-
olds were not shown due to inadequate sample size for
high precipitation events). The inset histograms in these
figures indicate the relative frequency of usage of each
probability category, and a Brier score (Brier 1950) is
also indicated. As shown, calibration of the ensemble
is greatly improved, with the corrected ensemble in most
circumstances being much closer to the desired 458 line
indicating perfect calibration; as well, Brier scores are
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FIG. 7. Rank distributions of 24-h precipitation and 850-mb temperature forecasts for subsets with low and high forecast
baroclinic instability: (a) 850-mb temperature, (b) 500-mb heights, (c) precipitation forecasts

improved after the correction. These results suggest that
the ensemble may be useful for generating probabilistic
forecasts of precipitation. The conclusion section will
discuss our future plans for such testing.

d. Errors of each ensemble member

As manifested in the nonuniform rank distributions,
the assumptions underlying the production of ideal en-
semble forecasts were not met for this dataset. We now
check some of these assumptions, specifically here, the
assumption that ensemble errors are identically distrib-
uted. Tables 1–3 summarize the root-mean-square error
(rmse) of each ensemble member after the bias correc-
tions (discussed earlier) were applied. Here, the rmse
was calculated for each ensemble member using each
sample point on each of the 15 days. Examining the
rmse’s, it appears there are large differences among
members. For example, in Table 1, the RSM 850-mb
temperature forecasts, in general, appear to have higher
error than the eta forecasts.

To quantify whether the rmse’s of the ensemble mem-

bers differed from each other, resampling tests were per-
formed. Assume there are Ns sample points forecasts over
all 15 case days (here, Ns 5 883, 929, and 700 sample
points for 24-h forecasts of 850-mb temperatures, 500-mb
heights, and precipitation, respectively). If a given mem-
ber’s forecast error is identically distributed to errors from
the pooled eta ensemble, then the member’s rmse statistic
calculated from its Ns sample points should be similar to
the rmse calculated from a sample of any Ns points from
any of the available 10 members times Ns sample points
in the eta ensemble, here selected with replacement. Sim-
ilarly, if the forecast error is identically distributed to the
error from pooled eta and rsm forecasts together, as is
assumed, the rmse statistic of a given member should be
similar to the rmse from a random sample from these
pools of 15 members times Ns sample points. Hence, the
rmse of each ensemble member was calculated over its
Ns sample points. Next, a random set of Ns points selected
was with replacement from the pool of 10N eta forecasts
alone, and the rmse was calculated. This step was re-
peated 1000 times. Similarly, a set of Ns points was se-
lected from the pool of 15Ns combined eta and RSM
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FIG. 7. (Continued)

forecasts, the rmse calculated, and the procedure repeated
1000 times. Finally, Ns points were selected from the 5Ns

RSM forecasts alone, the rmse calculated, and repeated
1000 times.

The rank of the member’s actual rmse combined with
the 1000 pooled rmse values are shown in columns 3–
5 of Tables 1–3. For example, the ranks for 850-mb
temperature forecasts in column 3 of Table 1 indicate
that RSM forecast members consistently have higher
rmse than any random samples calculated from the eta
forecasts alone; similarly, column 5 shows that the eta
forecasts are typically lower in error than the pool of
RSM forecasts. Even considering the eta forecasts alone,
it appears several ICs may typically produce lower error
forecasts than others. For example, the eta ‘‘control’’
forecast has an 850-mb temperature rmse ranked 166th
when pooled with 1000 random forecasts, while the eta
bred ‘‘N2’’ forecasts rank 754th. The variation in per-
formance is more noticeable for 24-h geopotential
height forecasts (Table 2) where the ranks of various
eta forecasts are consistently near the lowest rank or
near the highest rank. However, applying the same re-
sampling with the precipitation forecasts (Table 3), there
appears to be greater homogeneity of the rmse, reflected

in the typically moderate rank values for each member.
Perhaps the more moderate rank is an indication that
the assumption of iid error is closer to being met for
this forecast parameter.

For geopotential heights and temperature, there is ev-
idence that the forecast errors for each ensemble member
are not iid, with the bred forecasts generally having high-
er error than the nonbred forecasts. Paradoxically, the
rank distributions appear similar (Figs. 4a–c vs Figs. 4d–
f). The difference might be explained if the bred forecasts
were more variable. To test this, the variance of the bred
members about their mean were calculated for each sam-
ple point, as well as the variance of the five other eta
members about their mean. A nonparametric test, the
Wilcoxon signed-rank test (Wilks 1995) was used to test
the hypothesis of a difference in variances, with the null
hypothesis being no difference. The bred members were
more clearly more variable (p , 0.01 for 850-mb tem-
peratures, p , 0.00001 for 500-mb heights). This may
imply that dispersion of the ensemble per se is not nec-
essarily a desirable characteristic unless the dispersion is
a result of sampling of realistic alternative trajectories
through the phase space. This result appears to imply that
use of the interpolated bred forecast ICs from the MRF
increased the variability but, since the resulting rank dis-
tributions were similar, the benefit of increased ensemble
variability was offset by decreased accuracy.

4. Comparison of ensemble performance against
mesoeta forecasts

Will a single, high-resolution forecast produce a more
useful forecast than an ensemble of forecasts run at
reduced resolution? With this dataset, forecasts from the
29-km mesoeta forecast model run to 36 h were also
available for such comparisons. The processing time of
the 10 eta forecasts and the single mesoeta are roughly
comparable [31 500 central processing unit seconds
(CPUs) for its 48-h forecast vs 26 500 CPUs for the
mesoeta’s 36-h forecast, respectively].

The usefulness of a forecast is a complicated issue.
An ensemble mean forecast may not be valuable for
examining the most likely flow pattern, as ensemble
averaging can produce unrealistically smooth forecasts.
Conversely, the single mesoeta forecast may be less
valued by a forecaster interested in the forecast uncer-
tainty. If the forecast user specifically desires the lowest-
error forecast at a given point, then the error of the
ensemble mean or other summary forecast may provide
a competitive alternative to the mesoeta forecast.

The last six rows of Tables 1–3 show the rmse’s of
the mesoeta forecast and five alternative summary fore-
casts. Here, the mesoeta forecasts archived on a 40-km
grid were area averaged over the appropriate gridpoints
to 80-km resolution and verified on the same grid as
the ensemble forecasts. Domain-average bias correc-
tions were applied to both the ensemble and mesoeta
forecasts by cross-validation, as explained earlier. The



1322 VOLUME 125M O N T H L Y W E A T H E R R E V I E W

FIG. 8. Rank histograms composited from all casedays except 5 September 1995. (a) Unprocessed
histogram for subset of points with ensemble variability less than 0.03 in. (b) As in (a) but for
points with ensemble variability between 0.03 and 0.12 in. (c) As in (a) but for points with ensemble
variability greater than 0.12. (d) As in (a) but after application of running line smoother. (e) As in
(b) but after smoother. (f) As in (c) but after smoother.

five possible ensemble summary forecasts verified here
are the mean and median eta forecasts, the median fore-
cast of all 15 members, and two other forecasts, a
weighted mean forecast and a forecast of the presumed
‘‘best four’’ members. Assuming the error characteris-
tics vary among ensemble members, then perhaps only
the best few members or an appropriately weighted sum
would minimize the error. Hence, for the weighted mean
forecasts, the summary forecast f 9 was a weighted sum
of each of the 15 forecasts:

15

f 9 5 w f , (6)O j j
j51

with the weight optimally determined using the error
variances of each ensemble member (Daley 1991,2sj

99–100):
22sjw 5 . (7)j 15

22sO k
k51
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FIG. 9. Reliability diagrams for original ensemble and ensemble corrected with rank histogram information:
(a) for 0.01-in. threshold, (b) 0.10 in., (c) 0.25 in.
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TABLE 1. Performance of each ensemble member for 850-mb 24-h
temperature forecasts. Column 1: Ensemble member. Column 2: The
rmse of each ensemble member summed over all points and all case
days. Column 3: Rank of the given member’s rmse calculated over
all points and casedays compared to rmse of 1000 different random
shufflings among eta members. Column 4: Ranks of the given mem-
ber’s rmse compared to rmse of 1000 different random shufflings
among both eta and RSM members. Column 5: Ranks of the given
member’s rmse compared to rmse of 1000 different random shufflings
among both RSM members alone.

Forecast and
initial

condition
rms

error (8C)

Rank/1001
eta

resampled

Rank/1001
all

resampled

Rank/1001
RSM

resampled

Eta bred P1
Eta bred P2
Eta opnl
Eta AVN
Eta control
Eta eDAS
Eta 3DVAR
Eta NGM
Eta bred N1
Eta bred N2

2.56
2.56
2.50
2.44
2.42
2.48
2.57
2.43
2.55
2.58

664
680
443
234
166
380
715
216
647
754

241
246

98
36
15
72

277
32

227
321

1
2
1
1
1
1
6
1
1
9

RSM control
RSM N1
RSM N2
RSM P1
RSM P2

2.69
2.85
3.03
2.98
2.86

946
999

1001
1001
1000

712
968

1000
999
973

79
485
911
857
528

Mesoeta
Eta mean
Weighted mean
Best four
Eta median
Median

2.41
2.40
2.34
2.39
2.41
2.39

150
113

42
110
154

99

14
8
6
8

14
7

1
1
1
1
1
1

TABLE 2. Same as Table 1 but for 500-mb 24-h geopotential height
forecasts.

Forecast and
initial

condition
rms

error (m)

Rank/1001
eta

resampled

Rank/1001
all

resampled

Rank/1001
RSM

resampled

Eta bred P1
Eta bred P2
Eta opnl
Eta AVN
Eta control
Eta EDAS
Eta 3DVAR

30.22
29.23
25.63
25.49
25.54
25.51
28.27

938
840

89
73
78
73

646

829
620

12
9

11
10

392

370
151

1
1
1
1

48
Eta NGM
Eta bred N1
Eta bred N2
RSM control
RSM N1
RSM N2
RSM P1
RSM P2

25.86
29.62
31.78
28.37
31.06
31.25
32.29
32.28

119
887
996
673
980
989
998
998

20
709
969
409
921
939
984
984

1
231
746

53
583
630
838
837

Mesoeta
Eta mean
Weighted mean
Best four
Eta median
Median

25.03
25.05
25.21
25.04
25.15
25.23

38
37
54
38
48
54

3
3
3
3
3
3

1
1
1
1
1
1

TABLE 3. Same as Table 1 but for 500-mb 24-h total precipitation
forecasts.

Forecast and
initial

condition
rms

error (in.)

Rank/1001
eta

resampled

Rank/1001
all

resampled

Rank/1001
RSM

resampled

Eta bred P1
Eta bred P2
Eta opnl
Eta AVN
Eta control
Eta EDAS
Eta 3DVAR
Eta NGM

0.23
0.24
0.24
0.24
0.24
0.24
0.24
0.25

407
542
534
583
535
451
492
610

441
600
589
628
590
501
545
648

470
594
581
625
582
513
549
650

Eta bred N1
Eta bred N2
RSM control
RSM N1
RSM N2
RSM P1
RSM P2

0.26
0.24
0.23
0.24
0.23
0.24
0.25

732
542
386
521
386
485
680

757
598
421
574
421
537
703

783
589
452
570
452
542
719

Mesoeta
Eta mean
Weighted mean
Best four
Eta median
Median

0.23
0.23
0.22
0.25
0.23
0.22

373
340
206
644
373
239

409
374
242
681
409
266

440
404
291
697
440
317

The error variances are again calculated by cross vali-
dation, whereby the error variances appropriate to the
first caseday are set using a training dataset from ca-
sedays 2–15, and so on. Similarly, the ‘‘best four’’ is
an average of the four ensemble members with the low-
est error variances as determined through the cross val-
idation.

Inspecting Table 1, for 850-mb temperature forecasts,
it appears the mesoeta forecast rmse is comparable to
the values for the individual eta ensemble members but
higher than many of the ensemble summary statistics
with the exception of the overall median. Conversely,
Table 2 indicates that the rmse for 500-mb geopotential
height forecasts appears to be better than most of the
ensemble summary measures. Finally, in Table 3, the
rmse for ensemble summary measures appear slightly
smaller than for the mesoeta precipitation forecasts.

These differences were tested for statistical signifi-
cance using a one-sided nonparametric Wilcoxon
signed-rank test with a 5 0.05 and the null hypothesis
being equality of absolute error between the collection
of paired samples. Table 4 lists the p values from these
tests. As shown, there are differences in comparative
performance for the 12-, 24-, and 36-h forecasts. In
general, the mesoeta is competitive or better than the
ensemble summary measures for 12-h 850-mb temper-

ature, 24-h 500-mb heights, and 36-h heights and tem-
peratures; conversely, for 24-h precipitation, 12-h
500-mb height, and 24-h 850-mb temperature forecasts,
all the ensemble summary forecasts are significantly
better than the mesoeta. Note also that except for 36-h
500-mb height forecasts, many of the tests for signifi-
cance are failed in instances where the mesoeta error is
lower, indicating the hypothesis of a difference in error
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TABLE 4. Significance (p values) for one-sided, Wilcoxon signed-
rank test of the difference in means between the mesoeta forecasts
and various ensemble summary forecasts. An asterisk indicates the
overall mesoeta rmse was lower than the given summary measure.

850
temp

500
height Precip.

12-h Mesoeta vs eta mean
12-h Mesoeta vs weighted mean
12-h Mesoeta vs best four
12-h Mesoeta vs eta median
12-h Mesoeta vs ensemble

median

0.1901*
0.0002
0.1890*
0.0000*

0.1889*

0.0001
0.0000
0.0196
0.0206

0.0003

N/A
N/A
N/A
N/A

N/A

24-h Mesoeta vs eta mean
24-h Mesoeta vs weighted mean
24-h Mesoeta vs best four
24-h Mesoeta vs eta median
24-h Mesoeta vs ensemble

median

0.0545
0.0006
0.0707
0.0001*

0.0182

0.0920*
0.2873*
0.3045*
0.0915*

0.0885*

0.0528
0.4635
0.2889*
0.1953*

0.4244

36-h Mesoeta vs eta mean
36-h Mesoeta vs weighted mean
36-h Mesoeta vs best four
36-h Mesoeta vs eta median
36-h Mesoeta vs ensemble

median

0.0006*
0.2349*
0.0005*
0.0003*

0.0678*

0.0000*
0.0000*
0.0000*
0.0000*

0.0000*

N/A
N/A
N/A
N/A

N/A

cannot be rejected. In general, it appears that the en-
semble summary measures are competitive with the me-
soeta.

5. Conclusions and recommendations

This paper examined the performance of a prototype
short-range ensemble forecasting system using the eta
and RSM models. This prototype was run by NCEP
using in-house objective analyses and interpolated bred
ICs from the MRF ensembles. The performance of the
ensemble was evaluated in two ways. First, the ensemble
was assumed to be run with a perfect model and ICs,
which were all equally plausible. Under these assump-
tions, the verification is itself a plausible member of the
ensemble, and examining the forecast value at a given
point, the rank of the verification when pooled with the
ensemble should be equally likely to occur in any of
the possible ranks. Using quasi-independent sample
points, histograms of the rank distribution were gen-
erated, showing that uniformity of rank was not
achieved in the unprocessed ensembles. Rank distri-
butions were also examined for collocated sets of points,
one representing an average of many precipitation ob-
servations, the other using one observation. The distri-
butions were very similar, indicating that nonuniformity
of rank could not be attributed solely to problems with
the observations but was more a problem of the model
and ICs.

The uniformity of rank was also examined for subsets
of the ensemble that were the most and least baroclin-
ically unstable. The rank distributions for precipitation
were similar but temperature and geopotential height
distributions were noticeably more uniform for the high

baroclinic subset. This suggests the ensemble is tuned
to capture the variability of midtropospheric flow but
that this does not necessarily translate to accurate fore-
casts of the variability of surface parameters.

The error characteristics of individual ensemble mem-
bers were examined. It was shown that for 850-mb tem-
perature and 500-mb geopotential height forecasts, there
were differences in the performance of ensemble mem-
bers, both between the eta and RSM and even among
ensemble members. Typically, the forecasts from the
bred ICs were higher in error than the forecasts from
the analyses themselves. Precipitation forecasts had
more homogeneous error characteristics.

There were some notable forecast benefits demon-
strated with this test ensemble configuration. First, even
with a nonuniform distribution, it was demonstrated that
the ensemble can be post-processed to produce more
calibrated probabilistic forecasts. First, simple, domain-
average bias corrections were tried. This ameliorated
the bias as manifested in the skewness of rank distri-
butions, but the distributions were still more highly pop-
ulated at the extreme ranks. More sophisticated bias
corrections such as are used in MOS were not tried
because of the small sample size. For precipitation, a
further correction to the ensemble was attempted,
whereby probabilistic forecasts were created by using
the ensemble in conjunction with the probability infor-
mation embedded in the rank histograms. This produced
a more highly calibrated forecast. We are currently com-
paring these forecasts against probabilistic precipitation
forecasts generated from MOS. Likely there is room yet
for improvement in this technique. As with MOS, the
more cases available, the more sophisticated bias cor-
rections and more accurate rank histograms can be for-
mulated, improving the probability forecasts. A training
set as large as MOS uses may not be necessary, however,
as on each forecast day multiple ensemble member fore-
casts are available, as opposed to a single forecast on
each day in the MOS training dataset.

Summary measures such as the mean and median
forecasts were shown to often exhibit less error than the
competing mesoeta forecasts, especially during the ear-
lier hours of the forecast. This is particularly promising
since only readily already available ICs were used; with
more carefully selected ICs, it is reasonable to expect
improvements in the performance of future SREFs. Fur-
ther, both our results and the results of Mullen and
Baumhefner (1994) suggest that the ensemble perfor-
mance may be particularly useful in the more synop-
tically active situations, where good forecasts are par-
ticularly important.

How can this ensemble configuration be improved?
As demonstrated by the nonuniformity of rank and the
heterogeneity of member errors, the amalgamation here
of existing analyses and interpolated bred ICs is not
optimal. Hence, first and foremost, future research
should address just how to best create a distribution of
ICs tailored to short-range weather forecasts. Ideally,
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the ICs should be plausible but should project on the
growing modes of the day. The perturbation techniques
may vary; what is a good perturbation for a weakly
baroclinic, statically neutral summer atmosphere may
not be equally appropriate during statically stable, bar-
oclinically active winter months. Also, with the SREF,
the design of initial conditions should perhaps focus on
the successful prediction of surface parameters rather
than midtropospheric flow. We suggest considering the
perturbation of fields such as soil moisture, or the use
of variable model physics within the ensemble (Stensrud
and Fritsch 1994).

Though unexplored here, changes to the forecast
model may reduce ensemble errors. Generally, model
improvements should benefit both single-integration and
ensemble forecasts. However, using the same model
physics for single-integration forecasts and ensembles
may not always be optimal. For example, the use of
strong diffusion coefficients may be preferable to bound
the error in a single-integration forecast, but if the dif-
fusion also radically limits the dispersion of the ensem-
ble, the net effect may be detrimental. Recent research
by Houtekamer et al. (1996) suggests that diffusion co-
efficients may be incorrectly formulated and/or too
strong.

Assuming a dispersive yet relatively plausible set of
ICs can be generated, a third important area needing
research is how to allocate the given computer power
that is available. This study made no attempt to deter-
mine the optimal use of computer power, that is, how
many ensemble members at what resolution is optimal
given an upper limit for CPU usage. Hence, the ensem-
ble error can reasonably be expected to improve in the
future with a more careful selection of ICs and model
resolution/member size. As noted before, the choice 10
years hence may be between a single-integration, 5-km
model; an 8-member ensemble at 8.4-km resolution; a
16-member ensemble at 10-km resolution; a 256-mem-
ber ensemble at 20-km resolution; and so on. In the
future, we envision that when new computer resources
become available, the power will not automatically be
used for increased model resolution but rather will be
based on test results of the expected benefit at various
resolutions and ensemble sizes.
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